Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
2.
Sci Rep ; 14(1): 6924, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519508

RESUMO

The presence of water badly affects the moisture susceptibility of the reclaimed asphalt Foamed Bituminous Mix (FBM). The present study is mainly emphasized to assess the moisture susceptibility of reclaimed asphalt FBM, Where RAP is being incorporated as a replacement of fresh aggregates. Moisture susceptibility of the mix is evaluated in terms of tensile strength ratio (TSR) and resilient modulus ratio, subjected to different conditioning procedures namely AASHTO T283, modified IDOT, TG-2 guidelines, and MIST. Further data analytics and regression modeling are also carried out to determine the moisture susceptibility of the mix and to check the statistics among the variables. The findings show that the incorporation of RAP in the FBM improves moisture resistance. Further, FBM containing 100% RAP shows the least moisture susceptibility in terms of TSR and Mr ratio irrespective of any conditioning type. Moreover, MIST conditioning may be preferred to assess the moisture sensitivity as it simulates the field pore pressure effects. Further, mathematical analysis is carried out to predict the moisture susceptibility of mix. Adjusted R square coefficient indicates a better fit of the prediction model developed. Overall, the study may be helpful to highway professionals in analyzing the conditioning procedures and determining the moisture sensitivity of the reclaimed asphalt Foamed Bituminous Mix.

3.
Sci Rep ; 14(1): 4533, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402249

RESUMO

Postpartum Depression Disorder (PPDD) is a prevalent mental health condition and results in severe depression and suicide attempts in the social community. Prompt actions are crucial in tackling PPDD, which requires a quick recognition and accurate analysis of the probability factors associated with this condition. This concern requires attention. The primary aim of our research is to investigate the feasibility of anticipating an individual's mental state by categorizing individuals with depression from those without depression using a dataset consisting of text along with audio recordings from patients diagnosed with PPDD. This research proposes a hybrid PPDD framework that combines Improved Bi-directional Long Short-Term Memory (IBi-LSTM) with Transfer Learning (TL) based on two Convolutional Neural Network (CNN) architectures, respectively CNN-text and CNN audio. In the proposed model, the CNN section efficiently utilizes TL to obtain crucial knowledge from text and audio characteristics, whereas the improved Bi-LSTM module combines written material and sound data to obtain intricate chronological interpersonal relationships. The proposed model incorporates an attention technique to augment the effectiveness of the Bi-LSTM scheme. An experimental analysis is conducted on the PPDD online textual and speech audio dataset collected from UCI. It includes textual features such as age, women's health tracks, medical histories, demographic information, daily life metrics, psychological evaluations, and 'speech records' of PPDD patients. Data pre-processing is applied to maintain the data integrity and achieve reliable model performance. The proposed model demonstrates a great performance in better precision, recall, accuracy, and F1-score over existing deep learning models, including VGG-16, Base-CNN, and CNN-LSTM. These metrics indicate the model's ability to differentiate among women at risk of PPDD vs. non-PPDD. In addition, the feature importance analysis demonstrates that specific risk factors substantially impact the prediction of PPDD. The findings of this research establish a basis for improved precision and promptness in assessing the risk of PPDD, which may ultimately result in earlier implementation of interventions and the establishment of support networks for women who are susceptible to PPDD.


Assuntos
Aprendizado Profundo , Depressão Pós-Parto , Transtorno Depressivo , Humanos , Feminino , Depressão Pós-Parto/diagnóstico , Depressão Pós-Parto/epidemiologia , Prevalência , Fatores de Risco
4.
Food Sci Biotechnol ; 33(3): 505-518, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38274183

RESUMO

Probiotics have become increasingly popular as consumers demand balanced nutrition and health benefits from their diet. However, lactose intolerance and allergies to milk proteins may make dairy-based probiotics unsuitable for some individuals. Thus, probiotics derived from cereals and millets have shown promise as an alternative to dairy probiotics. Soaking, germination, and fermentation can reduce the anti-nutritional factors present in cereal grains and improve nutrient quality and bioactive compounds. Biochemical properties of probiotics are positively influenced by fermentation and germination. Thus, the current review provides an overview of the effect of fermentation and germination on the biochemical properties of probiotics. Further, probiotics made from non-dairy sources may prevent intestinal infections, improve lactose metabolism, reduce cholesterol, enhance immunity, improve calcium absorption, protein digestion, and synthesize vitamins. Finally, health-conscious consumers seeking non-dairy probiotic options can now choose from a wider variety of low-cost, phytochemically rich probiotics derived from germinated and fermented cereal grains.

5.
Sci Rep ; 14(1): 1369, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228641

RESUMO

The empirical application of polarization and depolarization current (PDC) measurement of transformers facilitates the extraction of critical insulation-sensitive parameters. This technique, rooted in time-domain dielectric response analysis, forms the bedrock for parameterization and insulation modeling. However, the inherently time-consuming nature of polarization current measurements renders them susceptible to data corruption. This article explores deep-learning-based short-duration techniques for forecasting polarization current to address this limitation. By incorporating spatial shortcuts, the residual long short-term memory (LSTM) network facilitates the seamless propagation of spatial and temporal gradients. Furthermore, the relative forecasting assessment of the proposed residual LSTM model's performance is made against traditional LSTM, attention LSTM, gated recurrent units (GRU), and convolutional neural network (CNN) models. Thus, optimal model selection strategies are evaluated based on their capability to capture extended dependencies and short-term information present in the data. In addition, the Monte Carlo dropout prediction is employed to estimate uncertainty in polarization current forecasts. The findings demonstrate that the proposed residual LSTM network model for polarization current forecasting yields the lowest error metrics and maintains prediction consistency over the testing duration. Thus, the proposed approach significantly reduces PDC measurement time, providing an effective means to develop proactive maintenance strategies for evaluating the insulation condition of transformers.

6.
Sci Rep ; 13(1): 22803, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38129436

RESUMO

Despite being treatable and preventable, tuberculosis (TB) affected one-fourth of the world population in 2019, and it took the lives of 1.4 million people in 2019. It affected 1.2 million children around the world in the same year. As it is an infectious bacterial disease, the early diagnosis of TB prevents further transmission and increases the survival rate of the affected person. One of the standard diagnosis methods is the sputum culture test. Diagnosing and rapid sputum test results usually take one to eight weeks in 24 h. Using posterior-anterior chest radiographs (CXR) facilitates a rapid and more cost-effective early diagnosis of tuberculosis. Due to intraclass variations and interclass similarities in the images, TB prognosis from CXR is difficult. We proposed an early TB diagnosis system (tbXpert) based on deep learning methods. Deep Fused Linear Triangulation (FLT) is considered for CXR images to reconcile intraclass variation and interclass similarities. To improve the robustness of the prognosis approach, deep information must be obtained from the minimal radiation and uneven quality CXR images. The advanced FLT method accurately visualizes the infected region in the CXR without segmentation. Deep fused images are trained by the Deep learning network (DLN) with residual connections. The largest standard database, comprised of 3500 TB CXR images and 3500 normal CXR images, is utilized for training and validating the recommended model. Specificity, sensitivity, Accuracy, and AUC are estimated to determine the performance of the proposed systems. The proposed system demonstrates a maximum testing accuracy of 99.2%, a sensitivity of 98.9%, a specificity of 99.6%, a precision of 99.6%, and an AUC of 99.4%, all of which are pretty high when compared to current state-of-the-art deep learning approaches for the prognosis of tuberculosis. To lessen the radiologist's time, effort, and reliance on the level of competence of the specialist, the suggested system named tbXpert can be deployed as a computer-aided diagnosis technique for tuberculosis.


Assuntos
Tuberculose , Criança , Humanos , Sensibilidade e Especificidade , Tuberculose/diagnóstico por imagem , Tuberculose/epidemiologia , Radiografia , Diagnóstico Precoce , Escarro/microbiologia
7.
Sci Rep ; 13(1): 17381, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833379

RESUMO

Software-defined networking (SDN) has significantly transformed the field of network management through the consolidation of control and provision of enhanced adaptability. However, this paradigm shift has concurrently presented novel security concerns. The preservation of service path integrity holds significant importance within SDN environments due to the potential for malevolent entities to exploit network flows, resulting in a range of security breaches. This research paper introduces a model called "EnsureS", which aims to enhance the security of SDN by proposing an efficient and secure service path validation approach. The proposed approach utilizes a Lightweight Service Path Validation using Batch Hashing and Tag Verification, focusing on improving service path validation's efficiency and security in SDN environments. The proposed EnsureS system utilizes two primary techniques in order to validate service pathways efficiently. Firstly, the method utilizes batch hashing in order to minimize computational overhead. The proposed EnsureS algorithm enhances performance by aggregating packets through batches rather than independently; the hashing process takes place on each one in the service pathway. Additionally, the implementation of tag verification enables network devices to efficiently verify the authenticity of packets by leveraging pre-established trust relationships. EnsureS provides a streamlined and effective approach for validating service paths in SDN environments by integrating these methodologies. In order to assess the efficacy of the Proposed EnsureS, a comprehensive series of investigations were conducted within a simulated SDN circumstance. The efficacy of Proposed EnsureS was then compared to that of established methods. The findings of our study indicate that the proposed EnsureS solution effectively minimizes computational overhead without compromising on the established security standards. The implementation successfully reduces the impact of different types of attacks, such as route alteration and packet spoofing, increasing SDN networks' general integrity.

8.
Sensors (Basel) ; 23(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37766066

RESUMO

Cloud computing is a distributed computing model which renders services for cloud users around the world. These services need to be rendered to customers with high availability and fault tolerance, but there are still chances of having single-point failures in the cloud paradigm, and one challenge to cloud providers is effectively scheduling tasks to avoid failures and acquire the trust of their cloud services by users. This research proposes a fault-tolerant trust-based task scheduling algorithm in which we carefully schedule tasks within precise virtual machines by calculating priorities for tasks and VMs. Harris hawks optimization was used as a methodology to design our scheduler. We used Cloudsim as a simulating tool for our entire experiment. For the entire simulation, we used synthetic fabricated data with different distributions and real-time supercomputer worklogs. Finally, we evaluated the proposed approach (FTTATS) with state-of-the-art approaches, i.e., ACO, PSO, and GA. From the simulation results, our proposed FTTATS greatly minimizes the makespan for ACO, PSO and GA algorithms by 24.3%, 33.31%, and 29.03%, respectively. The rate of failures for ACO, PSO, and GA were minimized by 65.31%, 65.4%, and 60.44%, respectively. Trust-based SLA parameters improved, i.e., availability improved for ACO, PSO, and GA by 33.38%, 35.71%, and 28.24%, respectively. The success rate improved for ACO, PSO, and GA by 52.69%, 39.41%, and 38.45%, respectively. Turnaround efficiency was minimized for ACO, PSO, and GA by 51.8%, 47.2%, and 33.6%, respectively.

9.
Sci Rep ; 13(1): 14605, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669970

RESUMO

The patients' vocal Parkinson's disease (PD) changes could be identified early on, allowing for management before physically incapacitating symptoms appear. In this work, static as well as dynamic speech characteristics that are relevant to PD identification are examined. Speech changes or communication issues are among the challenges that Parkinson's individuals may encounter. As a result, avoiding the potential consequences of speech difficulties brought on by the condition depends on getting the appropriate diagnosis early. PD patients' speech signals change significantly from those of healthy individuals. This research presents a hybrid model utilizing improved speech signals with dynamic feature breakdown using CNN and LSTM. The proposed hybrid model employs a new, pre-trained CNN with LSTM to recognize PD in linguistic features utilizing Mel-spectrograms derived from normalized voice signal and dynamic mode decomposition. The proposed Hybrid model works in various phases, which include Noise removal, extraction of Mel-spectrograms, feature extraction using pre-trained CNN model ResNet-50, and the final stage is applied for classification. An experimental analysis was performed using the PC-GITA disease dataset. The proposed hybrid model is compared with traditional NN and well-known machine learning-based CART and SVM & XGBoost models. The accuracy level achieved in Neural Network, CART, SVM, and XGBoost models is 72.69%, 84.21%, 73.51%, and 90.81%. The results show that under these four machine approaches of tenfold cross-validation and dataset splitting without samples overlapping one individual, the proposed hybrid model achieves an accuracy of 93.51%, significantly outperforming traditional ML models utilizing static features in detecting Parkinson's disease.


Assuntos
Doença de Parkinson , Humanos , Linguística , Aprendizado de Máquina , Redes Neurais de Computação , Projetos de Pesquisa
10.
ACS Appl Bio Mater ; 6(10): 3959-3983, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37699558

RESUMO

Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world's fatal diseases, has drawn scientists' attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood-brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanotecnologia , Biopolímeros/uso terapêutico
11.
Environ Sci Pollut Res Int ; 30(60): 125176-125187, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37402910

RESUMO

The fate of humankind and all other life forms on earth is threatened by a foe, known as climate change. All parts of the world are affected directly or indirectly by this phenomenon. The rivers are drying up in some places and in other places, it is flooding. The global temperature is rising every year and the heat waves are taking many souls. The cloud of "extinction" is upon the majority of flora and fauna; even humans are prone to various fatal and life-shortening diseases from pollution. This is all caused by us. The so-called "development" by deforestation, releasing toxic chemicals into air and water, burning of fossil fuels in the name of industrialisation, and many others have made an irreversible cut in the heart of the environment. However, it is not too late; all of this could be healed back with the help of technology and our efforts together. As per the international climate reports, the average global temperature has increased by a little more than 1 °C since 1880s. The research is primarily focused on the use of machine learning and its algorithm to train a model that predicts the ice meltdown of a glacier, given the features using the Multivariate Linear Regression. The research strongly encourages the use of features by manipulating them to determine the feature with a major impact on the cause. The burning of coal and fossil fuels is the main source of pollution as per the study. The research focuses on the challenges to gather data that would be faced by the researchers and the requirement of the system for the development of the model. The study is aimed to spread awareness in society about the destruction we have caused and urges everyone to come forward and save the planet.


Assuntos
Mudança Climática , Camada de Gelo , Humanos , Biodiversidade , Temperatura , Combustíveis Fósseis
12.
Sensors (Basel) ; 23(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37448004

RESUMO

Effective scheduling algorithms are needed in the cloud paradigm to leverage services to customers seamlessly while minimizing the makespan, energy consumption and SLA violations. The ineffective scheduling of resources while not considering the suitability of tasks will affect the quality of service of the cloud provider, and much more energy will be consumed in the running of tasks by the inefficient provisioning of resources, thereby taking an enormous amount of time to process tasks, which affects the makespan. Minimizing SLA violations is an important aspect that needs to be addressed as it impacts the makespans, energy consumption, and also the quality of service in a cloud environment. Many existing studies have solved task-scheduling problems, and those algorithms gave near-optimal solutions from their perspective. In this manuscript, we developed a novel task-scheduling algorithm that considers the task priorities coming onto the cloud platform, calculates their task VM priorities, and feeds them to the scheduler. Then, the scheduler will choose appropriate tasks for the VMs based on the calculated priorities. To model this scheduling algorithm, we used the cat swarm optimization algorithm, which was inspired by the behavior of cats. It was implemented on the Cloudsim tool and OpenStack cloud platform. Extensive experimentation was carried out using real-time workloads. When compared to the baseline PSO, ACO and RATS-HM approaches and from the results, it is evident that our proposed approach outperforms all of the baseline algorithms in view of the above-mentioned parameters.


Assuntos
Algoritmos , Computação em Nuvem , Carga de Trabalho
13.
PeerJ Comput Sci ; 9: e1387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346565

RESUMO

One of the leading causes of death among people around the world is skin cancer. It is critical to identify and classify skin cancer early to assist patients in taking the right course of action. Additionally, melanoma, one of the main skin cancer illnesses, is curable when detected and treated at an early stage. More than 75% of fatalities worldwide are related to skin cancer. A novel Artificial Golden Eagle-based Random Forest (AGEbRF) is created in this study to predict skin cancer cells at an early stage. Dermoscopic images are used in this instance as the dataset for the system's training. Additionally, the dermoscopic image information is processed using the established AGEbRF function to identify and segment the skin cancer-affected area. Additionally, this approach is simulated using a Python program, and the current research's parameters are assessed against those of earlier studies. The results demonstrate that, compared to other models, the new research model produces better accuracy for predicting skin cancer by segmentation.

14.
Environ Sci Pollut Res Int ; 30(26): 68327-68338, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37118399

RESUMO

All around the world, but particularly in developing nations, carbon dioxide emissions are on the rise, and climate change and global warming are brought on by an increase in CO2 emissions. This article provides an overview of the technological effect on energy consumption in the residential, transport, and industrial sector and its ultimate effect on the environment. Using the STIRPAT-Kaya-EKC model for the years 1990 to 2020, this study looked at the threshold impact of technological advancements on the link between disaggregated energy use and CO2 emissions for a panel of 10 Asian countries using the panel threshold regression. Findings demonstrate that the EKC phenomenon is present in the chosen Asian region. Findings also suggest that technology has a threshold influence on the relationship between energy use and carbon emissions; however, this effect varies across sectors.


Assuntos
Dióxido de Carbono , Desenvolvimento Econômico , Dióxido de Carbono/análise , Ásia , Tecnologia , Indústrias , Energia Renovável
15.
Entropy (Basel) ; 25(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36832613

RESUMO

The environment and development are major issues of general concern. After much suffering from the harm of environmental pollution, human beings began to pay attention to environmental protection and started to carry out pollutant prediction research. A large number of air pollutant predictions have tried to predict pollutants by revealing their evolution patterns, emphasizing the fitting analysis of time series but ignoring the spatial transmission effect of adjacent areas, leading to low prediction accuracy. To solve this problem, we propose a time series prediction network with the self-optimization ability of a spatio-temporal graph neural network (BGGRU) to mine the changing pattern of the time series and the spatial propagation effect. The proposed network includes spatial and temporal modules. The spatial module uses a graph sampling and aggregation network (GraphSAGE) in order to extract the spatial information of the data. The temporal module uses a Bayesian graph gated recurrent unit (BGraphGRU), which applies a graph network to the gated recurrent unit (GRU) so as to fit the data's temporal information. In addition, this study used Bayesian optimization to solve the problem of the model's inaccuracy caused by inappropriate hyperparameters of the model. The high accuracy of the proposed method was verified by the actual PM2.5 data of Beijing, China, which provided an effective method for predicting the PM2.5 concentration.

16.
IEEE Trans Cybern ; 53(11): 7342-7352, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36331644

RESUMO

This study focused on the asynchronous event-triggered output-feedback controller design problem for discrete-time singular Markov jump systems (MJSs). A hidden Markov model (HMM) was employed to estimate the system mode, which cannot always be ideally detected in practice. Because the full state is also difficult to obtain in practical scenarios, an output-feedback control scheme was used. In addition, an HMM-based event-triggered mechanism was also employed in the design of the controller to reduce the communication burden of the networked system. Sufficient conditions for the stochastic admissibility of a closed-loop singular MJS with a prescribed H∞ performance index were established using the Lyapunov functional technique. Finally, design procedures for an asynchronous event-triggered controller were summarized as a linear-matrix-inequality-based optimization algorithm. Two examples were considered to verify the effectiveness of the asynchronous event-triggered output-feedback controller design method.

17.
Sensors (Basel) ; 22(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36236208

RESUMO

In a smart city environment, with increased demand for energy efficiency, information exchange and communication through wireless sensor networks (WSNs) plays an important role. In WSNs, the sensors are usually operating in clusters, and they are allowed to restructure for effective communication over a large area and for a long time. In this scenario, load-balanced clustering is the cost-effective means of improving the system performance. Although clustering is a discrete problem, the computational intelligence techniques are more suitable for load balancing and minimizing energy consumption with different operating constraints. The literature reveals that the swarm intelligence-inspired computational approaches give excellent results among population-based meta-heuristic approaches because of their more remarkable exploration ability. Conversely, in this work, load-balanced clustering for sustainable WSNs is presented using improved gray wolf optimization (IGWO). In a smart city environment, the significant parameters of energy-efficient load-balanced clustering involve the network lifetime, dead cluster heads, dead gateways, dead sensor nodes, and energy consumption while ensuring information exchange and communication among the sensors and cluster heads. Therefore, based on the above parameters, the proposed IGWO is compared with the existing GWO and several other techniques. Moreover, the convergence characteristics of the proposed algorithm are demonstrated for an extensive network in a smart city environment, which consists of 500 sensors and 50 cluster heads deployed in an area of 500 × 500 m2, and it was found to be significantly improved.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Algoritmos , Inteligência Artificial , Análise por Conglomerados
18.
Comput Biol Med ; 151(Pt A): 106225, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306576

RESUMO

Normal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity which can be used to detect brain anomalies that are indicative of schizophrenia. Since deep learning is capable of automatically extracting the significant features and make classifications, the authors proposed a deep learning based model using RNN-LSTM to analyze the EEG signal data to diagnose schizophrenia. The proposed model used three dense layers on top of a 100 dimensional LSTM. EEG signal data of 45 schizophrenic patients and 39 healthy subjects were used in the study. Dimensionality reduction algorithm was used to obtain an optimal feature set and the classifier was run with both sets of data. An accuracy of 98% and 93.67% were obtained with the complete feature set and the reduced feature set respectively. The robustness of the model was evaluated using model performance measure and combined performance measure. Outcomes were compared with the outcome obtained with traditional machine learning classifiers such as Random Forest, SVM, FURIA, and AdaBoost, and the proposed model was found to perform better with the complete dataset. When compared with the result of the researchers who worked with the same set of data using either CNN or RNN, the proposed model's accuracy was either better or comparable to theirs.


Assuntos
Aprendizado Profundo , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Eletroencefalografia/métodos , Algoritmos , Aprendizado de Máquina
19.
Comput Intell Neurosci ; 2022: 7298903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052039

RESUMO

Lung disease is one of the most harmful diseases in traditional days and is the same nowadays. Early detection is one of the most crucial ways to prevent a human from developing these types of diseases. Many researchers are involved in finding various techniques for predicting the accuracy of the diseases. On the basis of the machine learning algorithm, it was not possible to predict the better accuracy when compared to the deep learning technique; this work has proposed enhanced artificial neural network approaches for the accuracy of lung diseases. Here, the discrete Fourier transform and the Burg auto-regression techniques are used for extracting the computed tomography (CT) scan images, and feature reduction takes place by using principle component analysis (PCA). This proposed work has used the 120 subjective datasets from public landmarks with and without lung diseases. The given dataset is trained by using an enhanced artificial neural network (ANN). The preprocessing techniques are handled by using a Gaussian filter; thus, our proposed approach provides enhanced classification accuracy. Finally, our proposed method is compared with the existing machine learning approach based on its accuracy.


Assuntos
Pneumopatias , Redes Neurais de Computação , Algoritmos , Humanos , Pulmão/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Aprendizado de Máquina
20.
Sleep Sci ; 15(3): 356-362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158717

RESUMO

Objectives: Military personnel are unique occupational groups who happen to frequently experience sleep insuffciencies. Since sleep disorders are known to be linked to many psychiatric symptoms, sleep disturbance is a salient concern among active duty service members and veterans. Existing evidence indicates that although sleep disturbances co-occur with mental illnesses, there is a tendency to particularly label them as consequences of certain mental health issues. Material and Methods: This review focuses on the emerging evidence which identifies sleep disturbances as a precursor for mental illnesses. In this regard, the impact of sleep disturbance on the development of mental health outcomes including post-traumatic stress disorder (PTSD), depression, and anxiety has been thoroughly scrutinized. A systematic search was conducted using PubMed, Scopus, and Web of Science academic databases using appropriate keywords. Results: Reviewed evidence substantiates the predicting role of sleep complaints and disorders to herald PTSD, depression, and anxiety among military staff. Conclusion: Early diagnosis of sleep disturbances and properly addressing them in active-duty service members and veterans should be then sought to prevent the development and progression of consequent mental health- related comorbidities in this study group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA